
Harry Redman

Registration number 100340391

2023

Using Time Series Classification in the Gym
with smartphones to gamify and encourage

exercise

Supervised by Jason Lines

University of East Anglia
Faculty of Science

School of Computing Sciences

Abstract

This report evaluates the performance of various classification algorithms on a dataset
of gym exercises recorded using time series data from the accelerometer and gyroscope
sensors of a smartphone device. The primary objective is to determine if you can accu-
rately classify gym exercises based on the sensor data collected.
The project compares a number of common machine learning algorithms such as Ran-
dom Forest, k-Nearest Neighbours with Euclidean Distance and Naïve Bayes, as well
as some time series specific algorithms, including Rocket and Time Series Forest, on a
range of different variations of the dataset. These variations include different attributes
such as using univariate data from a single axis or using multivariate data by combining
data from multiple axes. Prior to analysis, the time series data is pre-processed to use
same-length normalised time series data of 10 seconds.
The results of this project show that when using multivariate time series data that uses
both the accelerometer and gyroscope data, an accuracy of 99.2% can be achieved using
the Rocket classifier.

Acknowledgements

I would like to thank my supervisor Dr Jason Lines for his continuous support and
advice throughout this project as it would not have been possible without him. I would
also like to thank Barnaby Johnson for his contribution to the data collection of this
project.

CMP-6013Y

Contents

1. Introduction 5

2. Background 6

2.1. Time Series Classification . 6
2.2. Comparing classifiers in Time series 6
2.3. Related Work . 7

3. Preparation 9

3.1. Data Collection . 9
3.1.1. Chosen Gym Activities . 9
3.1.2. Sensors used . 10
3.1.3. Data Collection Methodology 12

3.2. Machine Learning Classifiers . 14
3.2.1. K Nearest Neighbours . 15
3.2.2. Decision Tree . 16
3.2.3. AdaBoost . 16
3.2.4. Random Forest . 17
3.2.5. Naïve Bayes . 17
3.2.6. BOSS . 17
3.2.7. Multi-Layer Perceptron . 17
3.2.8. Time Series Forest . 18
3.2.9. Rocket . 18

3.3. Evaluation Metrics . 19
3.4. Data Preprocessing . 20
3.5. Dataset Variations . 22
3.6. Prototype Experiment . 23

4. Implementation and Evaluation 25

4.1. Experimental Plan . 25
4.1.1. Experiments Performed . 25
4.1.2. Generating Data Splits . 27
4.1.3. Experiment Implementation 28

Reg: 100340391 iii

CMP-6013Y

4.2. Analysis of Results . 29
4.2.1. 8 Class gym exercise problem 29
4.2.2. Bodyweight or Weighted Exercises 33
4.2.3. Multiple Sensors . 35
4.2.4. Univariate or Multivariate . 36
4.2.5. Person Independent . 38

4.3. Real-time exercise classification . 40

5. Conclusion and Future Work 41

5.1. Conclusion . 41
5.2. Future Work . 42

References 43

A. Appendix 45

Reg: 100340391 iv

CMP-6013Y

1. Introduction

This project will focus on classifying a range of common gym exercises using Time Se-
ries Classification (TSC), a subfield of machine learning. The main goal of this project
is to determine if Time Series Classification can be used to accurately predict the fol-
lowing gym exercises: barbell squats, barbell bench press, barbell deadlifts, barbell
military press, press ups, pull-ups and sit-ups using accelerometer and gyroscope sen-
sor data recorded from an Android smartphone. The sensor data recorded will then be
processed and formatted to generate multiple dataset variations of the gym exercises
recorded. Which will be used to train and test a range of machine learning models,
including some generic algorithms as well as time series specific classifiers. This will
be done to answer the five main research questions that are going to be investigated
throughout this report, which are:

1. Can Time Series Classification algorithms be used to accurately classify between
8 different gym exercises?

2. Does using both the accelerometer and gyroscope sensors together increase model
performance, over using just one of the sensors?

3. Is multivariate data better for classifying gym exercises than univariate data?

4. Are weighted gym exercises or bodyweight exercises easier to classify using Time
Series Classification algorithms?

5. Are the classifiers person dependent or will a model built on one person’s data be
able to accurately classify the gym exercises of another person?

To answer these research questions and identify which algorithm performs best for this
TSC problem, each of the models developed by this project will be evaluated and com-
pared using various evaluation metrics. The results from the Time Series Classification
aspect of this project will then be used to develop a prototype app that predicts gym ex-
ercises in real-time that aims to encourage more people to participate in physical activity
by tracking their exercise.

The motivation for this project is due to rising obesity rates in the world population,
as well as growing concerns about health risks caused by living a sedentary lifestyle
such as Type 2 diabetes or stroke. According to Wang et al. (2011), an additional 11

Reg: 100340391 5

CMP-6013Y

million people in the UK are projected to be obese by 2030 compared to 2010. Causing
an annual increase in healthcare costs of £1.9-2 billion for obesity-related health issues.
This is a significant issue that must be addressed, and one of the most effective ways to
reduce obesity is through increased physical activity. Therefore, through my project, I
hope to be able to create a classifier model which can accurately classify gym exercises,
and then be used to track exercise and potentially gamify exercises to encourage more
people to increase their physical activity.

2. Background

2.1. Time Series Classification

A time series is a collection of ordered data points, that is typically collected over a
period of time and has evenly spaced intervals between the data points, as defined by
Lines et al. (2012). Time Series Classification is a form of machine learning prob-
lem, that looks at predicting a class for a given time series based on a labelled training
set of other time series. Ruiz et al. (2021) describes that for a Time Series Classifi-
cation problem a n set of time series is required: T = {t1, t2, . . . , tn}. There are two
types of TSC problems: univariate and multivariate. In a univariate problem, each in-
stance of time series ti only has a single series of m ordered and real-valued data points:
ti = ⟨ti,1, ti,2, . . . , ti,m⟩ and a given class label ci. Alternatively, there is a multivariate
TSC problem, where each instance of time series has multiple dimensions: the time
series is a list of arrays over d dimensions and m observations, X = ⟨x1,x2, . . . ,xd⟩,
where xk = {x1,k,x2,k, . . . ,xm,k}. Human Activity Recognition (HAR) is an example of a
multivariate Time Series Classification problem and is the category the problem of this
project falls under. Bagnall et al. (2018) defines HAR as the problem of predicting an
activity based on accelerometer and/or gyroscope data.

2.2. Comparing classifiers in Time series

Dau et al. (2019) presents a standard method for evaluating and comparing the perfor-
mance of different classifiers on a time series problem. Classifier performance can be
compared using one of two general methods: either the classifier’s prediction ability
or the probability estimates. When measuring a classifier through its ability to predict,

Reg: 100340391 6

CMP-6013Y

the most common evaluation metric used is accuracy. However, this metric does not
take into account class imbalances and therefore other metrics that can measure these
imbalances would be more informative for imbalanced class datasets. The most com-
mon evaluation metrics used for a binary classification problem are accuracy, balanced
accuracy, sensitivity, specificity, recall and the f statistic. Dau et al. (2019) mentions
that however, for multi-class problems accuracy and balanced accuracy are considered
enough to evaluate the predictive ability of a classifier. Some classifiers produce prob-
ability estimates and for this, metrics such as negative log-likelihood or area under the
receiver operating characteristic curve (AUROC) can be used.

When comparing classifiers on a small and single dataset, two main problems can
occur: the temptation to cheat results by setting the classifier parameters to optimise
the test data and that small differences in performances can seem magnified. Dau et al.
(2019) explains these problems can mostly be overcome by combining the train and
test data, re-sampling the data set multiple times and then averaging the test accuracy.
Several conditions must be met if this method is used:

• The default train test splits should always be included as the first re-sample

• The re-samples for each classifier must be the same

• The re-samples should keep the same train and test sizes

• The re-samples should be stratified to maintain the original class distribution

Once you have an evaluation metric to measure the performances of different algo-
rithms a significance test should be done to test if there is a significant difference in the
performances of the classifiers. Dau et al. (2019) outlines two hypothesis test’s that can
be used in a time series problem experiment: a paired two-sample t-test to determine if
there is a significant difference in mean accuracies or a Wilcoxon signed-rank test to see
if there is a difference in median accuracies.

2.3. Related Work

In order for me to select the best methods to use for my own work, it is important to
analyse other similar work to identify the strengths and limitations of the methods they
used. Time Series Classification for Human Activity Recognition problems has already

Reg: 100340391 7

CMP-6013Y

produced promising results, highlighting its potential for real-world use and giving me
an insight into the sort of results I could expect from my own time series problem.

A paper by Nurwanto et al. (2016) looked at detecting light sport exercises using the
accelerometer data collected from a smartwatch and smartphone. The exercises they
recorded data on for this project were push-ups, sit-ups, squat jumps and walking. In
total, the number of data instances they used was 25, with 15 of these being used for
a training set and the other 10 being used as the test set. For this project, they used
a k-Nearest Neighbours (kNN) classifier with a time series specific distance algorithm
called Dynamic Time Warping, which was tested on the following k values: 1, 3, 5 and
7. To determine the best k value to use for the classifier a 5-fold cross-validation was
performed on the training dataset to find the value that produced the best performance.
To evaluate the performance of the different models, the following evaluation metrics
were calculated; accuracy, sensitivity and specificity. The results of the cross-validation
on the training set found that the kNN classifier with a k value of 3 performed best and
when evaluated on the test data achieved an accuracy of 76.67% for push-ups, 80% for
sit-ups and 96.67% for squat jumps. Their project concluded that kNN with Dynamic
Time Warping can be used to classify light sport exercises, which suggests that it would
be a good algorithm to use for my Time Series Classification problem.

Another paper that focused on Human Activity Recognition was conducted by Khan
et al. (2020), in this paper they focused on predicting gym exercises with smartphone
sensors in a real-world setting. Three separate smartphones were used in this experi-
ment, that were positioned on the arm, the belly and the leg. They then recorded the ac-
celerometer and gyroscope readings from each smartphone to capture the data for each
exercise to create their dataset. In this experiment they used 14 gym exercises, some
of the exercises included were; barbell squat, decline close grip bench press and seated
barbell shoulder press. For each exercise, two sets of ten repetitions were recorded and
in order to reduce the noise in their data, they removed the first and last three seconds
of each exercise’s data collection. As a result, each set of an exercise produced 32 sec-
onds of data. Using a 4-second sliding window technique, they then extracted the mean,
standard deviation, maximum, and minimum features from this data.

The classifiers used in this study were all common machine learning algorithms that
were implemented using WEKA. The three classifiers used were kNN with Euclidean
Distance, Naïve Bayes and a j-48 Decision Tree. To train and test their models an 80/20
train-test split was used.

Reg: 100340391 8

CMP-6013Y

Comparing the results of all the algorithms when the smartphone was located on the
arm and trained using the data from both the accelerometer and the gyroscope sensors
individually, as well as both sensors combined. Showed that the kNN model had an
accuracy of 95.87% for accelerometer data, 91.83% for gyroscope data, and 98.04% for
both sensors together. While the Decision Tree classifier had an accuracy of 87.73%
for the accelerometer, 80.23% for the gyroscope, and 90.63% for both sensors together.
Finally, the accuracy of the Naïve Bayes classifier was only 62.49% for the combined
sensors, while the accelerometer was just 52.61% and the gyroscope 31.39%.

The results of their research showed the best classifier to use for predicting exer-
cises in the gym when the smartphone was placed on the arm was kNN, followed by a
Decision Tree and then Naïve Bayes. One notable thing was that using both sensors re-
sulted in better accuracy for all algorithms compared to when just using a single sensor.
This suggests that using multiple sensors could improve the outcomes of my time series
problem by capturing more data about an exercise. The location of the phone used to
gather the data is another factor that is highlighted, showing that the location can have
an impact on the outcomes and the data that is recorded. Therefore, for this problem, I
will choose one location to record all my data.

3. Preparation

3.1. Data Collection

3.1.1. Chosen Gym Activities

For this project, I needed a time series dataset of gym exercises that I could run experi-
ments on. Before I could conduct any experiments, I needed to record my own dataset
of different gym exercises that I would then be able to use. The gym activities that I
chose to collect data on can be divided into two main categories of exercise:

• Bodyweight exercises - which can be performed without any other equipment
and use the individual’s own bodyweight as a way to increase their strength or
endurance.

• Weighted exercises - exercises that require weighted equipment such as barbells
or dumbbells, which increases the difficulty of performing an exercise as a way to
increase the individual’s strength or endurance.

Reg: 100340391 9

CMP-6013Y

In total for this project, 8 different gym exercises were chosen for my data collection,
these were: barbell squat, barbell bench press, barbell deadlift, barbell military press,
sit-ups, press-ups, pull-ups and finally a stationary/null class that was selected for the
real-time classification aspect of this project, which will be used to detect if an exercise
was not being performed. These activities were chosen because all of them are core,
staple exercises that work out all the major muscle groups in the body and would result
in doing a full-body workout. Furthermore, the majority of gym-goers are aware of
these exercises and how to perform them.

All the activities selected have enough range of movement so that when recorded the
exercises should be able to be detected by the sensors and capture any characteristics of
the movement. However, some of the gym exercises selected have similar movement
paths such as military press and bench press. With the former requiring you to push a
weight vertically above your head while standing and the latter pushing a weight away
from your chest vertically while lying flat. The choice of selected exercises should
allow for an interesting comparison into if you can distinguish between the different
movements using Time Series Classification.

3.1.2. Sensors used

Trying to classify the gym exercises an individual is performing would be a HAR time
series problem as mentioned in Section 2.1. Therefore, to collect the data for this project
I will use both accelerometer and gyroscope sensors to record the exercises for the
dataset. Both of these sensors were chosen because the information that each sensor
captures is different and should give us more characteristics about the activity being
recorded. Helping the algorithms distinguish between the activities being performed.

Reg: 100340391 10

CMP-6013Y

Figure 1: A diagram showing the accelerometer axes of a smartphone, illustrated by
MathWorks (2023a)

An accelerometer sensor measures the acceleration of the device on three given axes.
These three axes are: the x-axis (which measures lateral acceleration), the y-axis (that
measures vertical acceleration) and then the z-axis (which measures the forward and
backward acceleration of a smartphone). A demonstration of the 3 axes’ movements for
the accelerometer sensor in a smartphone can be seen in Figure 1.

Reg: 100340391 11

CMP-6013Y

Figure 2: A diagram showing the gyroscope axes of a smartphone, illustrated by
MathWorks (2023b)

The gyroscope sensor like the accelerometer has three axes. Instead of measuring
acceleration along the three axes, a gyroscope measures the angular velocity, which is
the rate at which a device rotates around the three axes. The x-axis of a gyroscope
measures the rate of rotation around the horizontal axis, the y-axis measures the rate
of rotation around the vertical axis, and the z-axis measures the rotation of the forward
and back axis. A diagram of how these gyroscope movements are captured is shown in
Figure 2.

3.1.3. Data Collection Methodology

To collect my data, I decided on using a smartphone since almost all smartphones have
built-in accelerometer and gyroscope sensors that are available to access and use to
collect data. In addition to this, they are widely available with the majority of people
owning one, which therefore does not limit the applications of my project. To access
the sensors and record the data from the smartphone I decided on using a pre-existing
app that is available on the Google play store called SensorRecord 1. This app offers
the ability to record data from a wide range of sensors available on the smartphone

1https:// play.google.com/ store/ apps/ details?id=de.martingolpashin.sensor_record&hl=en_GB&gl=

US&pli=1

Reg: 100340391 12

https://play.google.com/store/apps/details?id=de.martingolpashin.sensor_record&hl=en_GB&gl=US&pli=1
https://play.google.com/store/apps/details?id=de.martingolpashin.sensor_record&hl=en_GB&gl=US&pli=1

CMP-6013Y

including accelerometer and gyroscope at any desired recording frequency. For each
recording made, a folder is created in the phone’s file system that contains a CSV file
for each of the sensors selected and stores the timestamps, the milliseconds and the data
values for the x, y and z axis of the sensor. An example of one of the sensor recording
CSV files produced by the SensorRecord app is highlighted in Figure 3.

Figure 3: An example of the CSV file containing the raw sensor data produced by the
SensorRecord app

For this project, a recording frequency of 10Hz was chosen because it provides a
good balance between capturing enough data to be able to see the characteristics of
the gym activities through the accelerometer and gyroscope sensor. While simultane-
ously generating small enough files to allow for easy data collection on any smartphone.
Therefore, not limiting the devices that can collect data for this project but also use the
real-time classification app. Notably, the average size of a CSV file for one of the sensor
recordings was only 14Kb.

Reg: 100340391 13

CMP-6013Y

Table 1: Number of instances recorded for participants on each exercise

Activity Participant 1 Participant 2

Bench Press 45 10
Squats 45 10
Deadlift 45 10
Military Press 45 10
Sit Ups 45 10
Press ups 45 10
Pull Ups 45 10
Stationary 45 10

In total, 440 data instances were recorded for the dataset of this project, a breakdown
of the number of instances can be seen in Table 1. For this dataset, two participants were
used to collect the data, with all the recordings being made with the same smartphone
while attached to the upper left arm of the participant performing the exercises. This
location was chosen because arm movement is required for all the activities, providing
us with the most information about the movement of the exercise. Whereas a phone
location such as a trouser pocket would not detect anywhere near the same amount of
movement compared to the arm location for the majority of the exercises. Finally, for
all exercises recorded a repetition range of around 6 to 12 was performed, generating
15-40 seconds of usable data per data instance.

3.2. Machine Learning Classifiers

This project utilised a range of different classifiers, including some common machine
learning algorithms that are implemented in Python (created by Van Rossum and Drake
(2009)) using the sci-kit learn tool-kit (developed by Pedregosa et al. (2011)), as well
as some time series specific classifier algorithms that have been specifically developed
to solve Time Series Classification problems, which have been implemented in Python
using the sktime tool-kit (developed by Löning et al. (2019)). An overview of all the
different classifiers used in the project is given below:

Reg: 100340391 14

CMP-6013Y

3.2.1. K Nearest Neighbours

The K Nearest Neighbours (kNN) classifier is a supervised machine learning algorithm
that is used for classification and regression problems. This algorithm works by classi-
fying a new data instance to the majority class of the k most similar data instances in
the training set. For a TSC problem, a kNN classifier works essentially the same by
calculating the distance between two time series and assigning the time series the class
of the k most similar time series in the training set. To calculate the similarity between
time series many different distance metrics can be used, for this project I will be using
two different metrics which are Euclidean Distance (ED) and Dynamic Time Warping
(DTW).

Figure 4: A diagram showing a comparison of how Euclidean Distance and Dynamic
Time Warping are calculated

Euclidean Distance is the most used distance metric used for any common classifi-
cation problem and calculates the distance between two points, which is shown below
in Formula 1. ED can also be used for TSC problems and is calculated by getting the
ED between linearly mapped data points in two time series. However, ED tends not to
be appropriate for time series problems because it assumes that the two time series are
aligned in time, which often is not the case with the majority of time series data. Since

Reg: 100340391 15

CMP-6013Y

they usually have misalignments in time and are not always the same length, which ED
can be sensitive to, resulting in poor performance from a classifier using this distance
metric.

d(x,y) =

√
n

∑
i=1

(xi− yi)2 (1)

Therefore, it is better to use a time series specific distance metric that can overcome
these issues, such as DTW. DTW does this by allowing some warping between two time
series to minimise the misalignments in the data and to find time series that are most
similar, Lines and Bagnall (2015). A visual representation of how both distance metrics
are calculated on two time series is shown in Figure 4.

3.2.2. Decision Tree

The Decision Tree algorithm is a popular supervised machine learning classifier that
can be used for classification and regression problems. The algorithm works by recur-
sively partitioning the training dataset into subsets based on decision rules learned from
finding similarities in the data’s attributes to create a decision tree model. As a result,
a decision tree containing decision nodes and leaf nodes is formed. A data instance is
then classified by traversing the tree and following the decision rules at each node until
it reaches a leaf node where it is then classified.

3.2.3. AdaBoost

The AdaBoost algorithm, proposed by Freund and Schapire (1997), is a boosting en-
semble method that works by training weak learning classifiers on repeatedly modified
versions of the dataset. On the first iteration, each data instance in the dataset is initially
given an equal weighting, giving all the data instances equal importance in the first
model. After each iteration, the weights for the data instances are updated depending
on if they were correctly classified or not. Instances that were miss-classified are given
higher weights, so that they have more importance in the next iteration to hopefully
increase the performance of the next model, by focusing on these instances more. The
predictions of these classifiers are then combined through a majority vote to produce a
final prediction.

Reg: 100340391 16

CMP-6013Y

3.2.4. Random Forest

Random Forest is a bagging ensemble method that works by training multiple Deci-
sion Trees on a random subset of features and data instances, which was proposed by
Breiman (2001). Each random sample taken from the dataset uses replacement. The
predictions from all the models are then combined to produce a final prediction for the
ensemble, by using a major vote method to select the class that was predicted the most
by all the models.

3.2.5. Naïve Bayes

Naïve Bayes is an algorithm that uses Bayes Theorem to find the probabilities of each
class in the training data by using data features and the number of occurrences of each
class in the training dataset. The algorithm assumes that all the features in the dataset are
independent of each other when calculating the probabilities for each class. Naïve Bayes
then makes predictions for new data instances by calculating the probabilities that a new
data instance belongs to each class based on the features it is given and the previously
calculated probabilities of each class. The class with the highest probability is then
predicted as the class for that given data instance. The formula for Bayes Theorem is
given below in Formula 2.

P(A|B) = P(B|A)P(A)
P(B)

(2)

3.2.6. BOSS

The BOSS (Bag of SFA Symbols) ensemble algorithm transforms time series data into a
discrete set of symbols by using a sliding window across the time series and a technique
known as SFA, which provides low pass filtering and quantisation to reduce noise in
the time series, Schäfer (2015). The classifier then compares the time series based on
the set of symbols produced for each series and looks for the time series with the most
similar symbol representation.

3.2.7. Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is an artificial neural network which is made up of mul-
tiple hidden layers. Each layer contains many neurons, which are all connected to every
neuron in the previous layer. The MLP algorithm works by initially setting the weights

Reg: 100340391 17

CMP-6013Y

and biases of each neuron randomly. Training data is then passed into the first layer of
the algorithm, which then produces outputs. These outputs are then used as the inputs
for the following layer and a non-linear activation function such as Re-Lu is applied to
the inputs. This process then continues until you reach the output layer which gives you
a prediction. During the training phase, backpropagation happens after each prediction
to minimise the difference between the network’s prediction and the data instance’s true
label to optimise the performance of the network. This is done by adjusting the weights
and biases in the network.

3.2.8. Time Series Forest

Time Series Forest (TSF) is a TSC specific ensemble algorithm, which constructs many
Decision Tree classifiers through random sampling with replacement. The classifier
makes a prediction for a time series data instance by using a majority vote method on
all the predictions made from the Decision Tree models. Deng et al. (2013) explain
that TSF uses a top-down, recursive strategy to build the Decision Trees but instead of
using a standard splitting criterion such as entropy gain, uses a splitting criterion called
entrance gain which is a combination of entropy gain and a distance measure.

3.2.9. Rocket

Rocket is a machine learning algorithm that is specifically developed for Time Series
Classification. Rocket stands for Random Convolutional Kernel Transform. The algo-
rithm that Dempster et al. (2020) has developed has a ‘state of the art accuracy’ which
can compete and also beat many other time series algorithms for a fraction of the com-
putational power they require. Rocket works by transforming time series data into a
set of features using random convolutional kernels. The features that are acquired from
this method are then used to train a linear classifier. Dempster et al. (2020) showed
that it was effective to create multiple random convolutional kernels and when they are
combined together, they can effectively find patterns in the time series data and find the
features that are relevant for the classification of the time series.

Reg: 100340391 18

CMP-6013Y

3.3. Evaluation Metrics

To evaluate the performance of the classifiers used in this project, I have decided to
calculate the following metrics based on conventional metrics typically used for TSC
problems that were described by Dau et al. (2019) in Section 2.2. A description of all
the metrics used is given below:

• Accuracy - The proportion of predictions that are correctly classified the same as
the true label.

• Balanced Accuracy - an adaptation of accuracy that gives an average accuracy
for each class in the dataset. This metric is typically used for datasets with class
imbalances.

• Train time - the amount of time taken for a classifier to be trained on the training
dataset. This metric is important for real-time classification because you will
want to be able to choose a classifier that is able to be trained quickly to produce
real-time predictions.

• Precision - refers to the percentage of predicted cases for a single class that was
actually that class. For a multi-class dataset, the precision for the whole dataset
can be calculated by taking an average of all the precisions for each class.

• Recall - is the percentage of cases for a particular class correctly classified. Sim-
ilar to precision for a multi-class dataset, the recall for the whole dataset can be
calculated by taking an average of all the recalls for each class.

• F1 Score - a metric that measures the overall accuracy of a model by considering
the precision and recall of the model, which is calculated by taking the mean of
the recall and precision.

• AUROC - Measures the area beneath the ROC curve, which is a plot of the true
positive rate versus the false positive rate. AUROC is a useful evaluation metric
since it indicates how good a model is at differentiating between classes. The
higher the AUROC score, the more accurate the model is at classifying classes.
AUROC is commonly used for binary classification problems, however, it can

Reg: 100340391 19

CMP-6013Y

also be adapted to be used for multi-class problems by using a one-versus-the-
rest technique, which calculates the AUROC for each class against the rest of the
classes and then calculates the average AUROC over all classes.

• T-test - a parametric statistical test used for determining whether or not there is a
significant difference in the means of two groups. This will be used to determine
whether there is a statistically significant difference in performance between a
classifier and the other classifiers used.

3.4. Data Preprocessing

Before I could begin training the machine learning classifiers and conduct any experi-
ments, I needed to preprocess the raw data I collected into a usable dataset that I could
then use for training the sci-kit learn and sktime machine learning classifiers and per-
form analysis on. In this section, I will outline the steps I took to create the dataset.

The first step I took to create a dataset was to take all the individual data recordings
generated by the SensorRecord app and combine the two CSV files generated by each
recording for the accelerometer and gyroscope sensors into a single CSV file. Each
combined CSV file then contained the timestamps, the milliseconds of when each sensor
data was taken in the recording, the accelerometer data and the gyroscope data for each
recording. To accomplish this, I wrote a custom Python script that iterated over every
data instance recording directory and read both the CSV files for each recording into
two Pandas DataFrames and merged them to create a single DataFrame that contained
the columns mentioned earlier in the paragraph.

After this, I then removed the first 5 seconds of data from each of the weighted ex-
ercise recordings and the first 3 seconds of data for the body-weight recordings. The
decision to remove the start of each recording was made to reduce noise that was cap-
tured from the setting up to record each exercise since the set-up of the movements was
very random and did not represent the movement of the exercise. The reasoning be-
hind removing different lengths of time for different exercises was made based on how
long it took to set up to do an exercise and how long it took to perform each set for an
exercise. Therefore, when looking at the data visually you could see that on average
the set-up time for weighted exercises was longer at around 5 seconds, whereas for the
bodyweight exercises the average set-up time was less, at around 3 seconds. This differ-
ence was caused due to having additional equipment to use for the weighted exercise,

Reg: 100340391 20

CMP-6013Y

which in this case was a Barbell. Following this, I then extracted the first 10-second
window of data remaining for each recording. The decision to use equal length record-
ings was made to keep the data consistent for all recordings across the dataset but also
for easier implementation when training and testing the machine learning algorithms.

xnormalised =
x− xmin

xmax− xmin
(3)

Next, I normalised the data by scaling each instance into the range of 0-1 by using
the min-max normalisation formula, which is highlighted in Formula 3. This was done
to ensure that all the data was of a common scale and that only the underlying pattern
of the exercise movement is captured and not how far off the ground the exercise is
being performed. This was shown to influence the outcome of the models making the
classification easier for the models which was discovered in my prototype experiment
that is explained further in Section 3.6. Finally, I then saved the final 10-second Pandas
DataFrame for each recording into a CSV file to create my formatted data instances.

Figure 5: Example ts file that shows the data for 4 data recordings, each with 6
dimensions and 3 timepoints and a class label

Once I had my formatted data instances, I then had to transform all the individual
CSV files into a file format that could store all the data as a single dataset and could be
used by both sci-kit learn and sktime. For this, I used a bespoke time series file format
created by sktime called a ts file that stores time series data in a standardised format that
can be easily loaded and used in sktime. A ts file is made up of two parts: the header
information and the data section. The header information section contains the metadata
about the dataset including headers such as the problem name, if the data is univariate or

Reg: 100340391 21

CMP-6013Y

multivariate and a list of all the possible class values. The data section follows this and
begins after the @data tag, with each data instance being represented on an individual
line, and each dimension for an instance being colon-delimited, with the final value
being the data instance class label. Each value for a dimension is then represented as a
comma-separated list, an example of a simple ts file problem can be seen in Figure 5.

The sktime library provides a range of utility functions that allow for creating and
loading ts files into Python easily. Throughout this project, I used two of these utility
functions, which were write_ndarray_to_tsfile and load_from_tsfile.
To create my dataset I used the write_ndarray_to_tsfile utility function pro-
vided by sktime, this function works by taking in a 3D array of all the data instances
in the format of (n_instances, n_columns, n_timepoints) and then a corresponding 1D
array of the same length which contains the data instances class values. To convert
the individual CSV files for each recording into the correct format required for the
write_ndarray_to_tsfile function, I created a Python script that read all the
data from the CSV files and appended the data from each one into a 3D array. Next,
I extracted the class label for each data instance from the CSV filename and appended
this to a 1D array. I made two variations of this script, the first created a single ts file
containing all the data instances from the data I collected which was used in the 10-fold
cross-validation experiment mentioned in Section 4.1.2. Whereas the second variation
created two ts files, that used 50% of each classes data for each file to create a train
and test split, which will be used in the single train-test split experiment which is also
described in Section 4.1.2.

3.5. Dataset Variations

From all the data I collected three main dataset variations were created. The first
was the main dataset called gym movements, which included the data for all 8 classes
recorded. The next variation was the bodyweight movements dataset, which consisted
of all the data instances for the sit-ups, press-ups and pull-ups classes. Finally, the last
dataset variation was the weighted movements dataset, which only included the data of
4 classes: bench press, squats, deadlifts and military press. In total though, 15 different
dataset variations were created from the 3 mentioned above, and each contained dif-
ferent sensor attributes to test on the classifiers to help answer my research questions
outlined in Section 1. All dataset attributes used for each variation are shown in Table

Reg: 100340391 22

CMP-6013Y

2.

Table 2: Attributes used in each dataset variation

Accelerometer Gyroscope
Dataset Name X axis Y axis Z axis X axis Y axis Z axis

Gym Movements X X X X X X
Gym Movements Accel X X X - - -
Gym Movements Gyro - - - X X X
Gym Movements ax X - - - - -
Gym Movements ay - X - - - -
Gym Movements az - - X - - -
Gym Movements gx - - - X - -
Gym Movements gy - - - - X -
Gym Movements gz - - - - - X
Bodyweight Movements X X X X X X
Bodyweight Movements Accel X X X - - -
Bodyweight Movements Gyro - - - X X X
Weighted Movements X X X X X X
Weighted Movements Accel X X X - - -
Weighted Movements Gyro - - - X X X

3.6. Prototype Experiment

In this project, I conducted three prototype experiments to test the viability of my data
collection and pre-processing methodology, as well as whether it was possible to create
a machine learning model that could successfully predict the gym exercise being per-
formed. The same data collection and pre-processing methods described in Section’s
3.1 and 3.4 were used for the prototype. However, data was only collected on a subset
of the exercises utilised in the whole project and the first iteration of the prototype ex-
periment used the dataset’s real values and not a normalised dataset. The exercises used
were squats, deadlifts, and bench press, resulting in a dataset of 56 data instances. All
three prototype experiments used the same three classifiers: kNN with ED, kNN with
DTW and Time Series Forest. All three of the classifiers were trained on 9 different
variations of the dataset collected, each using a different selection of attributes which

Reg: 100340391 23

CMP-6013Y

are outlined in Section 3.5.
In the first experiment, I used a single 70:30 train-test split which used the real val-

ues recorded from the sensor. Examining the results of this prototype experiment in the
Appendix, Table 11 it can be seen that all the classifiers achieved 100% accuracy when
using both accelerometer and gyroscope data together, as well as when using the mul-
tivariate accelerometer data and also when using only the y axis of the accelerometer.
Therefore, this indicated to me that the y axis for the accelerometer data was having too
much influence over the classifiers. This led me to discover that the ranges for each ex-
ercise’s data were completely different depending on how high off the ground you were
when you started the exercise and the range of motion of each exercise on a particular
axis. This allowed the models to clearly distinguish the different exercises based on
scale ranges. Therefore, making the classification too easy for the model.

As a result, I decided to normalise all of the data into a common scale between 0-
1 for the next iteration of the prototype. The normalisation method used is described
in Section 3.4. The results from the second prototype experiment showed kNN DTW
still performed the best out of the three classifiers, achieving 100% accuracy on all
of the multivariate dataset variations. Whereas, the accuracy for kNN ED dropped to
94.4% for both accelerometer and gyroscope data and then 83.3% for accelerometer
and gyroscope data separately. TSF followed similarly with an accuracy of 94.4% for
both the accelerometer and gyroscope together, 83.3% for just the accelerometer and
77.7% accuracy for just gyroscope data. In addition to this, the accuracy of just the
y axis for accelerometer dropped from 100% for all the classifiers to 66.6% for kNN
ED, 94.4% and then 83.3% for TSF. Showing the impact and influence that the different
scale ranges were having on the classification results. All the results for the second
prototype can be seen in the Appendix, Table 12.

Finally, in the last prototype experiment, I used a 50:50 train-test split with a nor-
malised dataset. The results for this can be seen in the Appendix, Table 13 and show
that the accuracy for kNN ED increased from 83.3% on the 70:30 split to 89.2% on the
50:50 split when using just the accelerometer data. However, the accuracy for just the
gyroscope on the kNN ED classifier decreased from 83.3% on the 70:30 split to 78.6%
on the 50:50 split. Examining the results of the 70:30 and 50:50 train-test splits results
show that there is not any definite conclusion to say that more training data increases
model performance, with some classifiers performing worse on more training data and
others performing better on more training data. This is most likely caused due to the fact

Reg: 100340391 24

CMP-6013Y

the dataset is very small for the prototype, meaning that small performance differences
are exaggerated because of this.

Overall, the findings from my prototype experiment were that TSC can be used to
predict gym exercises and that normalising the dataset ensures that there is no bias
towards any particular axis due to different scales of values for an exercise based on how
high off the ground you were when you started the exercise and the range of motion of
each exercise on a particular axis. The results also show that out of the three classifiers
used kNN DTW was the best classifier for this problem. With kNN DTW outperforming
the other two classifiers on every dataset variation apart from one. Finally, the results
also indicate that multivariate time series data produces better performing models for
identifying gym movements in comparison to just univariate data.

4. Implementation and Evaluation

4.1. Experimental Plan

4.1.1. Experiments Performed

For this project, the main results that I was interested in were the ones that would an-
swer my 5 research questions which are outlined in Section 1. To do this I ran five main
experiments on the classifiers I described in Section 3.2 using the various dataset varia-
tion’s that are given in Table 2. The five experiments that I performed and analysed the
results of were:

• 8 Class gym exercise problem - This experiment aims to answer my first re-
search question: ‘Can Time Series Classification algorithms be used to accurately
classify between 8 different gym exercises?’. This experiment will be run on
the full 8-class dataset of exercises collected by Participant 1 and will be trained
and tested using both a 10-fold cross-validation method and 50:50 train-test split
which are outlined below in Section 4.1.2. For this experiment, I hypothesised
that all the time series specific classifiers i.e. Rocket, Boss, kNN DTW and TSF,
would outperform all common machine learning algorithms used on the dataset,
because they were designed specifically to find patterns and similarities between
time series data, whereas the common algorithms are not.

Reg: 100340391 25

CMP-6013Y

• Bodyweight or Weighted Exercises - The aim of this experiment is to answer the
research question ‘Are weighted gym exercises or bodyweight exercises easier to
classify using Time Series Classification algorithms?’. The experiment will con-
tain two datasets: the first being a 3-class exercise dataset containing the follow-
ing bodyweight exercises: pull-ups, sit-ups and press-ups and the second dataset
consisting of the following weighted exercises: military press, deadlift, squat and
bench press. All of the data used in both datasets will only contain the data from
Participant 1 and will be trained and tested on all the classifiers specific in Section
3.2 using a 10-fold cross-validation method. I predict that the results of this ex-
periment will show that neither bodyweight nor weighted exercises are easier to
classify than the other because all of the exercises require you to move your body,
providing distinguishable characteristics for each movement.

• Multiple Sensors - ‘Does using both the accelerometer and gyroscope sensors
together improve model performance over using just one of the sensors?’ will be
the research question explored in this experiment. All of the algorithms described
in Section 3.2 will be trained and evaluated using a 10-fold cross-validation ap-
proach on the same exercise data instances used on the 8-class problem exper-
iment. However, this will be done three times using three different data at-
tributes, the first being just on the accelerometer data, the second purely gyro-
scope data, and finally both sensor’s data combined. The results of all three runs
will then be compared to determine which data feature combination creates the
best-performing models. I hypothesise that using the combined data from both
sensors will produce better results than using just the accelerometer or just the
gyroscope data; combining data from both sensors will provide more information
about an exercise’s movement pattern.

• Univariate or Multivariate The research question: ‘Is multivariate data better
for classifying gym exercises than univariate data?’ will be investigated in this
experiment. This will be done using a 10-fold cross-validation on all the classi-
fiers using variations of the 8-class exercise dataset from Participant 1, that in-
clude different sensor features to determine which type of data is best to use for
this TSC problem. For this experiment, I expect the results to show that using
multivariate data will produce better results than using univariate data because it
takes into account multiple directions of acceleration and rotation on the phone

Reg: 100340391 26

CMP-6013Y

compared to just one, which will help distinguish more clearly between different
exercises.

• Person Independent - The person-independent experiment will look to answer
the research question: ‘Are the classifiers person dependent or will a model built
on one person’s data be able to accurately classify the gym exercises of another
person?’. This experiment will be run on the dataset containing all 8 classes, with
the training data being Participant 1’s and the test data being Participant 2’s. From
this experiment, I predict that the results from the person-independent models will
be worse due to physical differences between the participants, which will lead to
different forms for each exercise.

4.1.2. Generating Data Splits

To evaluate the performance of the time series model’s in the experiments outlined in
Section 4.1.1, two approaches will be used to split my data into train and test splits.
The first method is a 10-fold cross-validation, which is when the dataset is randomly
split into 10 equally sized subsets, with nine of the subsets being used to train the model
and the one remaining set being used to test the model performance. This process
is then repeated 10 times, with each individual fold being used as the test data once.
The evaluation metrics that I will calculate from the models are described in Section
3.3. The results obtained from all 10 folds will then be averaged out to give an overall
performance for the model. This approach was chosen due to the overall size of my
dataset being small. So, as recommended by Dau et al. (2019) in Section 2.2 that for
time series problems with small data sets, re-sampling should be done multiple times to
get the average performance metrics. The pseudocode for the 10-fold cross-validation
approach I will be using on each classifier can be seen in the Appendix, Algorithm 1.

The second method I will be using to generate my train-test splits for my experiments
is a single train-test split approach, the pseudocode for this can be seen in the Appendix,
Algorithm 2. This approach will be conducted twice on two different dataset variations.
The first run of this will be done using a 50:50 train-test split, using just the 8-class
gym exercise data collected by Participant 1. This will be done to compare the results
to the 10-fold cross-validation approach, to see if there is any significant difference in
performance based on the size of the training data. However, it should be noted that due
to the size of the dataset being small, differences in performance could be magnified as

Reg: 100340391 27

CMP-6013Y

mentioned by Dau et al. (2019) in Section 2.2.
The second use of this method will be done to assess the models in the person-

independent experiment. The training set for this method will consist of all the data
collected by Participant 1, while the test data will consist of all the data collected by
Participant 2. The same evaluation metrics used for the 10-fold cross-validation ap-
proach mentioned above will be used for the single train-test split datasets.

4.1.3. Experiment Implementation

The Python programming language was used to implement all of the experiments in
this research, and the machine learning toolkits: sci-kit learn (developed by Pedregosa
et al. (2011)) and sktime (developed by Löning et al. (2019)) were used to implement
all of the algorithms. Sci-kit learn is an open-source machine learning package written
in Python that includes a number of algorithms and tools for doing a variety of machine
learning tasks such as classification, clustering, and regression. Sktime extends the sci-
kit learn toolkit by providing a set of algorithms and tools that are designed for time
series analysis.

For this project, all of the algorithms were implemented using their default param-
eters. The sci-kit learn toolkit was used to implement the following machine learning
algorithms: kNN ED, Naïve Bayes, Decision Tree, MLP, AdaBoost, and Random For-
est. All of these classifiers are common machine learning algorithms that were not
designed for Time Series Classification; regardless, they can be used on time series
data by ignoring the time relationship between the data features and by considering
each data point as a distinct attribute when training the classifier. All of the remaining
classifiers, including Rocket, TSF, Boss Ensemble, and kNN DTW, were implemented
with sktime and support time series data. However, only TSF is unable to handle mul-
tivariate time series data natively, so an ensemble method provided by sktime called
ColumnEnsembleClassifier was used to run this classifier on multivariate data.
The ColumnEnsembleClassifier works by training a classifier on each dimen-
sion of the data and predicts using a majority vote method.

To perform all the experiments custom Python scripts were created. The scripts
worked by iterating over all of the desired datasets for an experiment and loading the
train and test data for each dataset. These were then used to train each classifier and
make predictions on all of the test data, as well as calculate all of the performance met-

Reg: 100340391 28

CMP-6013Y

rics mentioned in Section 3.3. The results for each classifier were then saved in a .txt
file, along with a confusion matrix image of all of the classifier’s predictions. However,
for the experiments that used a 10-fold cross-validation to train and test the classifiers,
the sci-kit learn function called StratifiedKFold was used to create the folds on
the whole dataset. A StratifiedKFold was used to make sure that each fold con-
tained a proportional number of each class from the entire dataset. In addition, a seeded
random state was set on the StratifiedKFold to ensure that all of the folds were
reproducible and could be used on each classifier to ensure that the way the data was
split did not effect classifier performance.

4.2. Analysis of Results

4.2.1. 8 Class gym exercise problem

The primary objective of this experiment was to determine which classifier performed
best on the classification of the full gym exercise dataset, the results of the 10-fold cross-
validation in this experiment are displayed in Table 3 and show the average performance
metrics for each of the classifiers used across the 10 folds.

Table 3: Cross validation results for the gym movements dataset classification
Classifier Accuracy Balanced Accuracy Precision Recall F1 Score AUROC Train time (m/s)

AdaBoost 0.192 0.193 0.155 0.192 0.129 0.581 0.881
Boss Ensemble 0.978 0.976 0.982 0.978 0.976 0.996 2323.285
Decision Tree 0.433 0.433 0.472 0.433 0.426 0.676 0.090
kNN-ED 0.858 0.857 0.882 0.858 0.856 0.973 0.000
kNN-DTW 0.978 0.976 0.982 0.978 0.977 0.987 0.005
Multi-layer Perceptron 0.706 0.709 0.723 0.706 0.701 0.932 0.819
Naïve Bayes 0.761 0.764 0.795 0.761 0.762 0.939 0.002
Random Forest 0.822 0.823 0.845 0.822 0.819 0.976 0.359
Rocket 0.992 0.991 0.993 0.992 0.991 0.995 1.231
Time Series Forest 0.942 0.941 0.953 0.942 0.941 0.993 23.204

The main findings that can be taken from Table 3 are that all the time series classi-
fiers achieved better accuracy than all the common machine learning algorithms in the
experiment. The worst performing time series algorithm was TSF, which achieved an
accuracy of 94.2%, a result that is 8.4% higher than the best common machine learning
algorithm, which was kNN ED which achieved an accuracy of 85.8%. This result was
expected because the time series classifiers are designed to solve time series problems,
whereas the traditional machine learning algorithms are not.

Reg: 100340391 29

CMP-6013Y

Rocket was the best-performing classifier on the dataset achieving an average accu-
racy of 99.2%, this was closely followed by Boss Ensemble and kNN DTW which both
achieved an accuracy score of 97.8%. The most surprising outcome of this experiment
was the performance of the AdaBoost classifier. AdaBoost was only able to achieve
an accuracy of 19.2%, a result that is only 6.75% higher than the expected accuracy of
the dataset if a random selection was used to predict the gym exercise being performed.
This demonstrated that AdaBoost struggled immensely on the dataset and is not a good
classifier to use for this time series problem.

Comparing the confusion matrices of both Rocket and Adaboost - which were the
best and worst performing classifiers in the experiment, show that Rocket was able to
correctly predict the time series data for 357 of the 360 data instances classified, with it
only predicting 2 instances of military press and 1 stationary instance wrong. However,
looking at the confusion matrix of AdaBoost, it can be seen that the classifier predicted
205 of the possible 360 data instances as either a deadlift or pull-up exercise, showing
that the classifier could not distinguish the difference between the other exercises and
these two exercises. The confusion matrices for both of these classifiers’ predictions can
be seen below in Figure’s 6 and 7; the remaining confusion matrices of the classifiers
used in this experiment can be found in the Appendix, Figures 9 - 16.

Figure 6: A confusion matrix showing the predictions of the Rocket classifier for each
class in the gym dataset

Reg: 100340391 30

CMP-6013Y

Figure 7: A confusion matrix showing the predictions of the AdaBoost classifier for
each class in the gym dataset

Table 4: T-test showing if there is a significant difference in performance for all the
classifiers against the Rocket Classifier

Classifier Mean Difference (%) Mean Standard Deviation (%) T-Value Critical Region

AdaBoost 80.00 7.38 34.26 2.26
Boss Enemble 1.39 2.36 1.86 2.26
Decision Tree 55.83 8.12 21.74 2.26
kNN ED 13.33 4.86 8.67 2.26
kNN DTW 1.39 1.96 2.24 2.26
Multi-layer Perceptron 28.61 5.72 15.83 2.26
Naïve Bayes 23.06 6.81 10.71 2.26
Random Forest 16.94 4.62 11.60 2.26
Time Series Forest 5.00 3.66 4.32 2.26

Because Rocket achieved the highest accuracy, a two-tailed t-test was conducted on
the accuracy scores for each fold for Rocket versus every other classifier used. This was
done to determine if Rocket performed significantly better than all the other classifiers
and was the outright best classifier to use for this TSC problem. For Rocket to be
considered significantly better than any other classifier, the T-value for the test must
exceed the critical region, which in this case was 2.26 since a degree of freedom of 9
and a confidence level of 0.05 was used. The t-test results for this can be seen in Table

Reg: 100340391 31

CMP-6013Y

4. The outcome of the t-test performed determined that there is no significant difference
in the performance of the Rocket, Boss Ensemble, and kNN DTW classifiers on this
time series problem and therefore any three of the classifiers would be a good choice to
use for a real-time classification app for accurately classifying gym exercises. However,
the remaining 7 classifiers all exceeded the T-value of 2.26 and therefore are considered
to perform significantly worse than the Rocket classifier on the 8-class gym exercise
problem and are not in the same performance clique as the Rocket, KNN DTW and
Boss Ensemble classifiers.

Table 5: Accuracy of different algorithms on the 8-class problem with 50:50 train-test
data split

Classifier Accuracy

AdaBoost 0.141
Boss Ensemble 0.967
Decision Tree 0.408
kNN ED 0.739
kNN DTW 0.978
Multi-layer Perceptron 0.609
Naïve Bayes 0.679
Random Forest 0.755
Rocket 0.989
Time Series Forest 0.875

The 8-class experiment was also run on a 50:50 train-test split to see if the amount
of training data used impacted the performance of the classifiers. The results of the
classifiers on this train-test split are highlighted in Figure 5. Comparing the results from
the 50:50 train-test split to the results of the 10-fold cross-validation in Table 3 it can
be seen that all the classifiers obtained higher accuracies when evaluated using cross-
validation, except for kNN DTW which achieved the same accuracy on both train-test
split methods. The average increase in accuracy when using the cross-validation was
6.21%, with the largest difference coming from kNN ED, which saw a difference of
11.90% increase in accuracy. Therefore, analysing this data suggests that using a larger
training dataset increases the performance of the classifiers on this problem.

Overall, the outcomes of this experiment show that time series algorithms outper-

Reg: 100340391 32

CMP-6013Y

form common machine learning algorithms on this time series problem, allowing me to
accept my hypothesis for this experiment. The experiment also showed that the best-
performing algorithm on this problem was Rocket, which achieved the highest accuracy
of 99.2%. However, it was in the same performance clique as kNN DTW and Boss En-
semble. Therefore, any three of the classifiers could be used for this problem. Finally,
the results show that using more training data improves the classifier performance by
6.21% on average.

4.2.2. Bodyweight or Weighted Exercises

The results in Table 6 shows the mean balanced accuracy of each classifier over the
10 folds when evaluated on the bodyweight exercises and then on the weighted ex-
ercises. Table 6 also displays the difference of mean balanced accuracy between the
bodyweight and weighted exercises for each classifier, with a positive value indicating
that the classifiers had higher balanced accuracy on the bodyweight dataset and negative
values showing that classifiers performed better on the weighted dataset. For this exper-
iment balanced accuracy was analysed because of there being an unbalanced number
of classes between the datasets, which balanced accuracy takes into account and is not
influenced by, making it the best evaluation metric for this experiment.

Table 6: Balanced accuracy of different algorithms on bodyweight and weighted
datasets

Classifier Bodyweight Weighted Difference

AdaBoost 0.678 0.499 0.180
Boss Ensemble 1.000 0.989 0.011
Decision Tree 0.880 0.564 0.316
kNN ED 0.968 0.830 0.138
kNN DTW 1.000 0.976 0.024
Multi-layer Perceptron 0.895 0.831 0.064
Naïve Bayes 0.862 0.819 0.043
Random Forest 0.970 0.883 0.088
Rocket 1.000 1.000 0.000
Time Series Forest 0.993 0.936 0.057

Reg: 100340391 33

CMP-6013Y

Examining the results in Table 6 shows that all the classifiers performed better on the
bodyweight exercise dataset, except for Rocket which achieved 100% accuracy on both
datasets. The Decision Tree classifier saw the greatest difference in balanced accuracy
between the two types of exercises, with a 31.6% difference in classifier performance
between the two datasets, achieving a balanced accuracy of 88.0% on the bodyweight
exercise dataset compared to only 56.4% on the weighted exercise dataset. Furthermore,
AdaBoost saw a difference in balanced accuracy of 18.0% in favour of bodyweight
exercises, with the bodyweight dataset obtaining a balanced accuracy of 67.8% and the
weighted exercise dataset only getting a balanced accuracy of 49.9%.

These results imply that bodyweight exercises are easier to classify than weighted
exercises, with the average difference between the balanced accuracy of the two types
of exercise being 9.2% greater for bodyweight exercises. Additionally, the results show
that common machine learning algorithm approaches seem to find it harder to classify
weighted exercises correctly in comparison to the time series specific classifiers.

Table 7: T-test showing if there is a significant difference in classifying bodyweight and
weighted exercises for all the classifiers

Classifier Mean Difference (%) Mean Standard Deviation (%) T-value Critical Difference

AdaBoost 17.96 27.54 2.06 2.26
Boss Ensemble 1.13 2.39 1.49 2.26
Decision Tree 31.89 14.69 6.87 2.26
kNN ED 13.83 9.19 4.76 2.26
kNN DTW 2.38 4.27 1.76 2.26
Multi-layer Perceptron 6.38 10.93 1.84 2.26
Naïve Bayes 4.29 11.14 1.22 2.26
Random Forest 8.75 7.65 3.62 2.26
Rocket 0.00 0.00 0.00 2.26
Time Series Forest 5.71 8.42 2.14 2.26

To see if there was a significant difference in how difficult the two types of exercises
are to classify a t-test was performed on the balanced accuracy scores produced for the
10 folds for both datasets on all the classifiers, using a degree of freedom of 9 and a
confidence level of 0.05. Table 7 shows the results of this t-test on the paired sample
means, with the main finding being that only three of the ten classifiers used showed a
significant difference in accuracy for identifying bodyweight exercises versus weighted
exercises. The three classifiers with a significant difference were Decision Tree (T-
value: 6.87), kNN ED (T-value: 4.76), and Random Forest (T-value: 3.62).

Reg: 100340391 34

CMP-6013Y

Overall, the findings of this experiment indicate that bodyweight exercises are easier
to predict than weighted exercises with 9 out of the 10 of the classifiers obtaining higher
balanced accuracies on the bodyweight exercises. Despite this, there does not appear to
be a significant difference in how difficult the different exercise types are to classify on
the different algorithms. Only 3 of the 10 classifiers showed a significant difference in
performance. Based on this evidence, I cannot accept my hypothesis for this experiment
because the difference is not statistically significant between the two types of exercise,
despite some evidence suggesting that bodyweight exercises are easier to classify.

4.2.3. Multiple Sensors

Table 8: Accuracy results for each classifier trained on accelerometer data, gyroscope
data and accelerometer and gyroscope data combined

Accelerometer Gyroscope Accelerometer and Gyroscope

AdaBoost 0.178 0.236 0.192
Boss Ensemble 0.933 0.953 0.978
Decision Tree 0.436 0.472 0.433
kNN-ED 0.828 0.744 0.858
kNN-DTW 0.967 0.969 0.978
Multi-layer Perceptron 0.667 0.633 0.706
Naïve Bayes 0.661 0.608 0.761
Random Forest 0.761 0.783 0.822
Rocket 0.989 0.983 0.992
Time Series Forest 0.853 0.847 0.942

Table 8 shows the mean accuracy results for each classifier across the 10 folds when
trained on just the accelerometer sensor, the gyroscope sensor and when trained on both
of the sensor’s data together. Looking at these results it is clear to see that using both the
sensor’s data together to train the classifier models produces better performing models
than using just a single sensor, with 8 out of the 10 classifiers used in this experiment
obtaining greater accuracies when trained on both the sensors data compared to using
just one of the sensors. The classifiers that saw the biggest advantages from using both
the sensors were Naïve Bayes, which saw a 15.28% increase over just using the gyro-
scope sensor and a 10% increase over using the accelerometer sensor, TSF which saw
a 9.44% increase over just the gyroscope sensor and an 8.89% over just accelerometer

Reg: 100340391 35

CMP-6013Y

and kNN ED that saw an 11.29% increase over gyroscope and just a 3.06% increase
over just the accelerometer sensor. In contrast, the two classifiers that performed worse
on the combined sensors were AdaBoost and Decision Tree, which both saw better ac-
curacies when using just the gyroscope sensor. However, the differences were relatively
small with AdaBoost seeing a 4.44% better accuracy for just the gyroscope sensor and
Decision Tree having a 3.89% better accuracy when using just the gyroscope data.

Comparing both sensors individually to see if one is better than the other for col-
lecting and predicting gym exercises it can be seen that half of the classifiers produced
higher accuracies using accelerometer sensor data over gyroscope data and the other
half produced better accuracies when using gyroscope data over accelerometer data.
The classifiers that performed better on accelerometer data were: kNN ED, MLP, Naïve
Bayes, Rocket and TSF. Whereas, the remaining classifiers performed better on gyro-
scope data. Anecdotally, this suggests that if only one of the sensors were used on this
TSC problem, it would make no difference which sensor was used, with both sensors
performing equally well on the same number of classifiers and the largest difference in
performance on a single classifier being 8.33%.

In conclusion, the findings from this experiment show that using the combined data
to train and evaluate the classifiers produced better-performing models than the use of
just a single sensor’s data, with 8 of the 10 classifiers producing more accurate models.
Therefore, for this experiment, I can accept my hypothesis.

4.2.4. Univariate or Multivariate

Table 9: Accuracy results for each classifier on the univariate and multivariate dataset
variations on the 8-class gym dataset

Accel XYZ Accel X Accel Y Accel Z Gyro XYZ Gyro X Gyro Y Gyro Z Accel & Gyro XYZ

AdaBoost 0.178 0.272 0.175 0.161 0.236 0.194 0.142 0.242 0.192
Boss Ensemble 0.933 0.822 0.947 0.650 0.953 0.786 0.603 0.914 0.978
Decision Tree 0.436 0.397 0.400 0.256 0.472 0.281 0.158 0.497 0.433
kNN-ED 0.828 0.667 0.689 0.506 0.744 0.492 0.303 0.694 0.858
kNN-DTW 0.967 0.764 0.853 0.547 0.969 0.694 0.525 0.908 0.978
Multi-layer Perceptron 0.667 0.578 0.619 0.400 0.633 0.397 0.297 0.622 0.706
Naïve Bayes 0.661 0.547 0.536 0.369 0.608 0.414 0.306 0.558 0.761
Random Forest 0.761 0.636 0.675 0.453 0.783 0.522 0.358 0.744 0.822
Rocket 0.989 0.961 0.986 0.764 0.983 0.886 0.825 0.961 0.992
Time Series Forest 0.853 0.681 0.750 0.450 0.847 0.522 0.478 0.783 0.942

Examining the results in Table 9, which displays all of the classifier’s performance on
the univariate and multivariate dataset variations of the main full gym exercise dataset.

Reg: 100340391 36

CMP-6013Y

It can be observed that using multivariate accelerometer data provided more accurate
models than using univariate accelerometer data for 8 of the 10 classifiers. The TSF al-
gorithm was one of the algorithms that benefited significantly from utilising multivariate
data over univariate data, achieving an accuracy of 85.3% on multivariate accelerome-
ter compared to 68.1% on the x axis, 75.0% on the y axis and 45.0% on the z axis. The
only two classifiers that produced better accuracy on univariate data were AdaBoost and
Boss Ensemble. AdaBoost achieved the highest accuracy on the x axis with an accuracy
of 27.2% compared to just 17.8% on the multivariate data. Whereas, Boss Ensemble
obtained the highest accuracy on the y axis with an accuracy of 94.7% compared to
93.3% on multivariate.

Analysing the univariate and multivariate gyroscope data results reveals a similar
trend to the accelerometer results, with 8 of the 10 classifiers performing best on the
multivariate data, demonstrating that using multivariate data produces better perform-
ing models than just using univariate data. kNN DTW was one of the algorithms that
saw gains from using multivariate gyroscope data over univariate data with an accuracy
of 96.9% compared to 69.4% on the x axis, 52.5% on the y axis and 90.8% on the z
axis. AdaBoost and Decision Tree were the only two classifiers that performed best
on univariate data, with accuracies of 24.2% and 49.7% on the z axis, respectively. In
comparison to their multivariate gyroscope accuracies of 23.6% and 77.2%.

Overall, the findings of this experiment imply that using multivariate data improves
classifier performance over just using only univariate data, therefore I can accept my
hypothesis for this research question.

Reg: 100340391 37

CMP-6013Y

4.2.5. Person Independent

Table 10: Accuracy of different algorithms on person-independent dataset

Classifier Accuracy

AdaBoost 0.175
Boss Ensemble 0.350
Decision Tree 0.175
kNN ED 0.375
kNN DTW 0.775
Multi-layer Perceptron 0.288
Naïve Bayes 0.338
Random Forest 0.338
Rocket 0.563
Time Series Forest 0.313

To further test the classifier’s on this TSC problem it was important to test the general-
isation of the classifiers when trained on one person’s data and tested on other people’s
data. This was done to determine if the models are person independent or if a training
period would be required by users before they could use the machine learning model.
Because there was only a small amount of test data available on the second participant
for this experiment, a prototype was developed. Therefore, further experiments with
more test data should be conducted in the future to further test the generalisation of the
models and draw solid conclusions about the generalisation of this TSC problem.

All of the data recorded by Participant 1 was used for the training dataset, producing
a training set of 360 instances, and all of the data recorded by Participant 2 was used for
the test dataset, producing a total of 80 data recordings. Table 1 shows a breakdown of
all the data instances recorded for each participant and class. The findings of this first
experiment are shown in table 10.

Table 10 displays the results of this initial person-independent experiment. The main
observation that can be made from these results is that the generalisation of this TSC
problem on new unseen data from a second participant is poor with all the classifiers per-
forming considerably worse in comparison to the results of the models produced from
the experiment conducted in Section 4.2.1 that was trained and tested on one person’s

Reg: 100340391 38

CMP-6013Y

data.
The best-performing classifier on the person-independent dataset was kNN DTW

achieving an accuracy of 77.5%. However, the most interesting result of this experiment
is the performance of Boss Ensemble, which was one of the best-performing models on
the person-dependent dataset (the dataset that consisted of just Participant 1’s data).
On the person-independent model, Boss Ensemble could only achieve an accuracy of
35.0%, compared to its accuracy of 97.8% on the person-dependent dataset. This is a
significant difference in the performance of the Boss Ensemble classifier of 62.8%.

Looking at the confusion matrix of the Rocket classifier on this experiment in Figure
8 it can be seen that the model struggled to classify deadlift, military press, and pull-up
movements between the two participants, with all the deadlift recordings being incor-
rectly classified as stationary movements, 7 of the 10 pull up movements being false
positives for military press and 7 out of 10 military press being false positives for the
bench press class. Therefore, this indicates that the form between the two participants
for those exercises is different and looks more like other classes than their true class
and that a training period for each user should be conducted to train a model before
they use it. One possible reason for this could be because of the physical differences
in the participants used, with Participant 1 being 6’4 and Participant 2 being smaller at
5’8. However, more data on a range of participants with varying physical characteristics
should be tested to see if this has an impact on performance.

Overall, the results obtained from the experiment support my hypothesis, with all
of the models performing worse compared to when they are trained and evaluated on
a single participant’s data, implying that the models have low generalisation on new
unseen data recorded from different people. As a result, a training period should be
implemented before using the machine learning models on new people. However, it is
essential to acknowledge that these findings are preliminary and that further testing on
a larger range of data is required to validate the results of this experiment before any
definitive conclusions can be reached.

Reg: 100340391 39

CMP-6013Y

Figure 8: A confusion matrix showing the predictions of the Rocket classifier when
trained on Participant 1’s data and tested on Participant 2’s data

4.3. Real-time exercise classification

An extension goal of this project was to create a real-time gym classification app to en-
courage and gamify exercise. From the findings discovered in my experiments and the
time series models produced, I have developed a prototype Android app that classifies
the gym exercise a user is performing in real-time based on the accelerometer and gyro-
scope readings recorded from the phone. The prototype app requires a user to attach the
smartphone device to their upper arm when recording themselves doing exercise. The
app can currently only predict the 8 exercises used in the TSC problem conducted in
Section 4.2.1.

The application works by recording the accelerometer and gyroscope data for a 15-
second period when the start button is pressed, capturing the user’s phone movement
during this time. The sensor data is then converted into a 2d JSON array and is sent
as a post request to the backend server via the Volley Library. This JSON array is then
converted into a numpy array, and the data is processed using the same method con-
ducted to create the dataset in this project’s machine learning aspect, which is explained
in Section 3.4. The 10 seconds of sensor data is then passed into the machine learning
model, which predicts the exercise. Example screenshots of the server doing this can be

Reg: 100340391 40

CMP-6013Y

seen in the Appendix, Figures 20 and 21. This prediction is then returned as a response
to the mobile app and displayed on the screen for the user to see, a screenshot of this
can be seen in the Appendix, Figure 18.

To create this prototype, I used the Java Android SDK for the front-end which ac-
cesses and records the sensor data from the smartphone device and then sends this data
to a backend server that has the serialised machine learning model running on it. For the
backend server, a Python Flask server was used to deploy my machine learning model
so that I could create real-time predictions. The model used for this prototype mobile
app was the Rocket model which achieved 99.2% accuracy on the 8-class problem ex-
periment in Section 4.2.1. This model was selected over Boss Ensemble even though
there was no significant difference in performance between the two models because it
achieved the highest overall accuracy and the train time of Rocket compared to Boss
Ensemble was considerably better. Although kNN DTW could have also been used for
this prototype with it having a faster train time than Rocket and there being no signifi-
cant difference between the two models’ performance. However, Rocket was ultimately
decided due to it having the best accuracy overall and a fast training time of just 1.2
seconds.

5. Conclusion and Future Work

5.1. Conclusion

In conclusion, this project has demonstrated that Time Series Classification can be used
to accurately predict gym exercises using accelerometer and gyroscope sensor data cap-
tured from a smartphone. This project achieved an accuracy of 99.2% on the problem
and therefore achieved the project’s aim. This project has also shown that Time Series
Classification can be used to create an application which is capable of predicting gym
exercises in real time.

The main findings from this project were that the Rocket algorithm was the best per-
forming model in this project, achieving an accuracy of 99.2%. However, both the kNN
DTW and Boss Ensemble algorithms were found to also be in the same performance
clique as Rocket. Therefore, both are good alternative options for this problem, with
both obtaining an accuracy of 97.7%. In addition to this, the results showed that com-
bining accelerometer and gyroscope data provided better performing models than using

Reg: 100340391 41

CMP-6013Y

either sensor’s data individually and that using multivariate data improved algorithm
performance over using only univariate data. The results also highlight that there is no
significant difference in the difficulty of classifying bodyweight exercises compared to
weighted exercises on the classifiers used. Finally, the results show that when using
data from new people, the generalisation of the models on this TSC problem appears
to be fairly poor compared to the generalisation of just a single participant. However,
this was a shortcoming of this project due to the limited amount of data collected from
other participants, which was caused by how time consuming it was to collect data for
multiple people. This is definitely an improvement that can be made for this project by
collecting more data on a wider range of people to further investigate this.

5.2. Future Work

To expand on the results of this project, there are many directions this project could be
taken if given more time and resources. The first direction this project could be taken
would be to collect data from a wider range of participants from varying fitness levels,
abilities and physical characteristics to further investigate the generalisation of the clas-
sifiers and help improve performance. Another future direction of this project would be
to develop a machine-learning model that is capable of detecting and counting individ-
ual repetitions of an exercise. To achieve this, I would look at collecting a new dataset
that was labelled with the exercise performed as well as the number of repetitions per-
formed. From there, I could then use supervised time series machine-learning classifiers
to create models that are capable of accurately detecting and counting repetitions of var-
ious exercises. The final avenue I would like to expand this project is to further develop
the real-time gym classification prototype app that I made. The features I would like
to incorporate in my app would be to be able to track users’ exercises in real-time to
analyse their form and provide suggestions on how to improve. In addition to includ-
ing a gamification aspect such as having achievements and goal settings to track users’
progress in order to motivate and encourage them to exercise more.

Reg: 100340391 42

CMP-6013Y

References

Bagnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J., Bostrom, A., Southam, P., and
Keogh, E. (2018). The UEA multivariate time series classification archive, 2018.
arXiv:1811.00075 [cs, stat].

Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.

Dau, H. A., Bagnall, A., Kamgar, K., Yeh, C.-C. M., Zhu, Y., Gharghabi, S.,
Ratanamahatana, C. A., and Keogh, E. (2019). The UCR Time Series Archive.
arXiv:1810.07758 [cs, stat].

Dempster, A., Petitjean, F., and Webb, G. I. (2020). ROCKET: exceptionally fast and
accurate time series classification using random convolutional kernels. Data Mining
and Knowledge Discovery, 34(5):1454–1495.

Deng, H., Runger, G., Tuv, E., and Vladimir, M. (2013). A time series forest for classi-
fication and feature extraction. Information Sciences, 239:142–153.

Freund, Y. and Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting. Journal of Computer and System Sciences,
55(1):119–139.

Khan, U. A., Khan, I. A., Din, A., Jadoon, W., Jadoon, R. N., Khan, M. A., Khan, F. G.,
and Khan, A. N. (2020). Towards a Complete Set of Gym Exercises Detection Using
Smartphone Sensors. Scientific Programming, 2020:e6471438. Publisher: Hindawi.

Lines, J. and Bagnall, A. (2015). Time series classification with ensembles of elastic
distance measures. Data Mining and Knowledge Discovery, 29(3):565–592.

Lines, J., Davis, L. M., Hills, J., and Bagnall, A. (2012). A shapelet transform for
time series classification. In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 289–297, Beijing China.
ACM.

Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., and Király, F. J. (2019). sk-
time: A Unified Interface for Machine Learning with Time Series. arXiv:1909.07872
[cs, stat].

Reg: 100340391 43

CMP-6013Y

MathWorks (2023a). Measure linear acceleration along X, Y, and Z axes in m/s2 -
Simulink.

MathWorks (2023b). Measure rotational speed around X, Y, and Z axes in rad/s -
Simulink.

Nurwanto, F., Ardiyanto, I., and Wibirama, S. (2016). Light sport exercise detection
based on smartwatch and smartphone using k-Nearest Neighbor and Dynamic Time
Warping algorithm. In 2016 8th International Conference on Information Technology
and Electrical Engineering (ICITEE), pages 1–5.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Research, 12:2825–2830.

Ruiz, A. P., Flynn, M., Large, J., Middlehurst, M., and Bagnall, A. (2021). The great
multivariate time series classification bake off: a review and experimental evaluation
of recent algorithmic advances. Data Mining and Knowledge Discovery, 35(2):401–
449.

Schäfer, P. (2015). The BOSS is concerned with time series classification in the presence
of noise. Data Mining and Knowledge Discovery, 29(6):1505–1530.

Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA.

Wang, Y. C., McPherson, K., Marsh, T., Gortmaker, S. L., and Brown, M. (2011). Health
and economic burden of the projected obesity trends in the USA and the UK. The
Lancet, 378(9793):815–825.

Reg: 100340391 44

CMP-6013Y

A. Appendix

Algorithm 1 TimeSeriesExperimentCV(dataset,cl f) return avgMetrics
Require: dataset, the full dataset file and the cl f , the classifier to evaluate in the ex-

periment
Ensure: avgMetrics, the average performance metrics of the classifier

1: data← loadData(dataset)
2: k← 10 ▷ set number of folds
3: evaluationMetrics← [] ▷ list to store evaluation metrics for each fold
4: for i← 1 ∈ k do
5: predictions← [] ▷ list to store predictions for each fold
6: classLabels← [] ▷ list to store all the data instances true class
7: trainData← getTrainData(data, i,k) ▷ get training data for current fold
8: testData← getTestData(data, i,k) ▷ get test data for current fold
9: classi f ier← buildClassi f ier(cl f)

10: classi f ier.train(trainData) ▷ train the classifier on the training data
11: for each dataInstance,classLabel ∈ testData do
12: prediction← classi f ier.predict(dataInstance)
13: predictions← predictions+ prediction
14: classLabels← classLabels+ classLabel

15: metricResults←CalculateMetrics(predictions,classLabels)
16: evaluationMetrics← evaluationMetrics+[metricResults]

17: avgMetrics← average(evaluationMetrics) ▷ calculate average metrics over 10
folds

18: return avgMetrics

Reg: 100340391 45

CMP-6013Y

Algorithm 2 TimeSeriesExperiment(trainDataset,testDataset,cl f) return metrics
Require: trainDataset, the train dataset file, testDataset, the test dataset file and the

cl f , the classifier to evaluate in the experiment.
Ensure: metrics, the performance metrics produced by the classifier on the test data

1: trainData← loadData(trainDataset)
2: testData← loadData(testDataset)
3: predictions← [] ▷ list to store predictions
4: classLabels← [] ▷ list to store all the data instances true class
5: classi f ier← buildClassi f ier(cl f)
6: classi f ier.train(trainData) ▷ train the classifier on the training data
7: for each dataInstance,classLabel ∈ testData do
8: prediction← classi f ier.predict(dataInstance)
9: predictions← predictions+ prediction

10: classLabels← classLabels+ classLabel

11: metricResults←CalculateMetrics(predictions,classLabels)
12: return metrics

Dataset kNN ED (%) kNN DTW (%) TSF (%)

Accelerometer and Gyroscope 100.0 100.0 100.0
Accelerometer 100.0 100.0 100.0
Gyroscope 55.5 94.4 100.0
Accelerometer X-axis 44.4 77.7 83.3
Accelerometer Y-axis 100.0 100.0 100.0
Accelerometer Z-axis 77.7 77.7 83.3
Gyroscope X-axis 61.1 88.8 72.2
Gyroscope Y-axis 38.8 66.6 77.7
Gyroscope Z-axis 61.1 94.4 94.4

Table 11: Prototype 1 results, showing the accuracy of each classifier on the 70:30
train-test split real valued dataset

Reg: 100340391 46

CMP-6013Y

Dataset kNN ED (%) kNN DTW (%) TSF (%)

Accelerometer and Gyroscope 94.4 100.0 94.4
Accelerometer 83.3 100.0 83.3
Gyroscope 83.3 100.0 77.7
Accelerometer X-axis 72.2 72.2 66.6
Accelerometer Y-axis 66.6 94.4 83.3
Accelerometer Z-axis 38.8 66.6 50.0
Gyroscope X-axis 66.6 94.4 66.6
Gyroscope Y-axis 50.0 72.2 61.1
Gyroscope Z-axis 83.3 94.4 83.3

Table 12: Prototype 2 results, showing the accuracy of each classifier on a 70:30
train-test split on a normalised dataset

Dataset kNN ED (%) kNN DTW (%) TSF (%)

Accelerometer and Gyroscope 92.3 100.0 92.3
Accelerometer 89.2 100.0 85.6
Gyroscope 78.6 100.0 82.1
Accelerometer X-axis 75.0 67.9 60.7
Accelerometer Y-axis 67.9 89.3 78.6
Accelerometer Z-axis 46.4 67.9 50.0
Gyroscope X-axis 67.9 96.4 64.3
Gyroscope Y-axis 42.9 53.6 50.0
Gyroscope Z-axis 85.6 96.4 85.7

Table 13: Prototype 3 results, showing the accuracy of each classifier on a 50:50
train-test split on a normalised dataset

Reg: 100340391 47

CMP-6013Y

Figure 9: A confusion matrix showing the predictions of the Boss classifier for each
class in the gym dataset

Figure 10: A confusion matrix showing the predictions of the Decision Tree classifier
for each class in the gym dataset

Reg: 100340391 48

CMP-6013Y

Figure 11: A confusion matrix showing the predictions of the kNN DTW classifier for
each class in the gym dataset

Figure 12: A confusion matrix showing the predictions of the kNN ED classifier for
each class in the gym dataset

Reg: 100340391 49

CMP-6013Y

Figure 13: A confusion matrix showing the predictions of the MLP classifier for each
class in the gym dataset

Figure 14: A confusion matrix showing the predictions of the Naïve Bayes classifier
for each class in the gym dataset

Reg: 100340391 50

CMP-6013Y

Figure 15: A confusion matrix showing the predictions of the Random Forest classifier
for each class in the gym dataset

Figure 16: A confusion matrix showing the predictions of the TSF classifier for each
class in the gym dataset

Reg: 100340391 51

CMP-6013Y

Figure 17: A screenshot of the prototype real-time classification app start screen

Reg: 100340391 52

CMP-6013Y

Figure 18: A screenshot of the prototype real-time classification app with the
prediction made

Figure 19: A screenshot of the development server running for the real-time
classification app

Reg: 100340391 53

CMP-6013Y

Figure 20: A screenshot of the development server receiving sensor data from the
prototype Android app in real time

Figure 21: A screenshot of the development server making a prediction based on the
data it received from the app using the Rocket model

Reg: 100340391 54

	Introduction
	Background
	Time Series Classification
	Comparing classifiers in Time series
	Related Work

	Preparation
	Data Collection
	Chosen Gym Activities
	Sensors used
	Data Collection Methodology

	Machine Learning Classifiers
	K Nearest Neighbours
	Decision Tree
	AdaBoost
	Random Forest
	Naïve Bayes
	BOSS
	Multi-Layer Perceptron
	Time Series Forest
	Rocket

	Evaluation Metrics
	Data Preprocessing
	Dataset Variations
	Prototype Experiment

	Implementation and Evaluation
	Experimental Plan
	Experiments Performed
	Generating Data Splits
	Experiment Implementation

	Analysis of Results
	8 Class gym exercise problem
	Bodyweight or Weighted Exercises
	Multiple Sensors
	Univariate or Multivariate
	Person Independent

	Real-time exercise classification

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Appendix

